INFORMATION OF A DOCTORAL THESIS IN ENGINEERING

Name of PhD. candidate: Bui Khac Khanh

Name of thesis: "Research on backward extrusion technology in high-strength low-alloy steel for manufacturing pressure pipes".

Specialization: Mechanical Engineering

Code No: 9520103

Full name of the scientific supervisor:

1. Dr. Nguyen Ha Tuan

2. Dr. Vu Trung Tuyen

Training institutions: National Research Institute of Mechanical Engineering –

Ministry of Industry and Trade

SUMMARY OF NEW CONCLUSIONS IN THESIS

1. Scientific significance of thesis

- Research on application of theoretical basis of backward extrusion method in production of pressure tube-shaped details from high-strength low-alloy steel.
- Combine theoretical research with digital and experimental simulation in determining suitable working area of ratio (d/D), (H/D) on shaping process of details in backward extrusion.
- Investigate impact of ratio between inner diameter and outer diameter (d/D) and height with outer diameter (H/D) of pipe details to deformation degree (φ), force force (P). Thereby, we can create working area and relation function between (d/D), (H/D) and φ ; P.
- Find distribution results of press and deformation in process of backward extrusion of alloy steel $30X3M\Phi$ and find a suitable working area as a scientific basis for experimental process, ensuring deformation and shaping ability of details.
- Initially find organizational changes and improvement in mechanical properties of alloy steel $30X3M\Phi$ after backward extrusion, meeting requirements of pressure pipe details.

2. Practical significance

- Research results of thesis contributes to development of mechanical working technology, being proactive in production of pressure pipe shaped details for civil and defense industries.
- Determine working area in accordance with ratio d/D = $0.77 \div 0.81$ and H/D ≤ 3.6 to improve efficiency in backward extrusion.

- Determining appropriate temperature for backward extrusion of hot alloy steel ($T = 1200^{\circ}C$).
- Experimental results have successfully fabricated body shell of anti-tank rocket PG 29 as basis of production of pressure pipes in Vietnam.
- Research results of thesis can be used as reference for teaching and research in field of mechanical working.

3. New contributions of the thesis

- Build surveying method on impact of ratio (d/D) and (H/D) to deformation degree of force in backward extrusion of high-strength alloy steel. At the same time, determine suitable working area of ratio (d/D) and (H/D) to maximum average pressure and the highest degree of equivalent strain.
- Determine size of bridge radius (R) of workpiece face, instead of workpiece with conical hole as real production, reducing error rate in backward extrusion.
- Determine rules of stress and deformation distribution in backward extrusion, thereby building the deformation model of material during alloy steel backward extrusion.
- Build an experimental system according to domestic research and production conditions; actively produce pressure pipes made from domestic produced cast steel.

Hanoi, June 24th, 2019

Supervisor group

Ph.Dcandidate

Dr. Nguyen Ha Tuan Dr. Vu Trung Tuyen

Bui Khac Khanh